Main research interest

The Medical Image Analysis group (IMAG/e) at TU/e concentrates on automatic analysis methods of medical images to support clinicians in diagnosis, prognosis and treatment. The focus is both on methodological development and clinical application. Methods are generally based on features or biomarkers derived from large sets of medical data or on models verified on extensive clinical datasets. With the rapidly increasing amount of medical data used in practice, the trend is towards learning-based techniques to improve the accuracy and robustness of classification, segmentation and detection tasks as well as towards finding novel biomarkers of disease from the wealth of data available.

Success stories

In pathology, digitization of stained tissue slides is becoming commonplace. This allows enlisting image analysis to support the pathologist with additional information and to relieve him/her of tedious tasks.
Visual analysis of slides is a time-consuming and subjective process, with large variability between observers. Image analysis has the potential to substantially improve the process. We have developed techniques to automatically determine the characteristic features of cancer tissues that are used to grade cases and to subsequently select treatment. We have shown that the automatically estimated features have prognostic value similar to human-defined features. Recent results include deep learning approaches to feature estimation and automatic prognosis that show a performance approaching that of pathologists. We are currently discussing with industrial partners how to incorporate these techniques in the clinical workflow of the pathologist.

Project example

  • DLMedIA is a consortium in which the TU/e collaborates with Radboud UMC, UMC Utrecht, Erasmus MC, UvA as well as clinicians and seven companies. Goal is to advance the clinical application of medical image analysis techniques based on deep learning.

Scientific staff

Key involved staff:
Prof. Josien Pluim (head of the group)
Medical image analysis
Prof. Marcel Breeuwer
Algorithms in clinical image analysis software
Dr. Mitko Veta
Deep learning / digital pathology
Dr. Veronika Cheplygina
Machine learning / crowdsourcing
Dr. Alexander Raaijmakers
MR physics / RF safety

Furthermore, 15 PhDs and PDs are working on projects in medical image analysis.


Visiting Address

Building Gemini Zuid
Room GEM-Z 2.106
Den Dolech 2 (De Wielen)
5612 AZ Eindhoven
(040) 247 5537


Postal address

Postbus 513
5600 MB Eindhoven